Class Schedule (subject to change)
Day 1
60 min – Electrical Stimulation Technology
Understanding electrical parameters, electrode types, and their applications.
30 min – Hands-On Laboratory I
Exploring sensory vs. muscle activation; twitch vs. sustained contractions.
30 min – Testing the Connection Between Nerve and Muscle
Assessing neuromuscular integrity and responsiveness.
15 min – Break
15 min – Hands-On Practice
Individual electrode placement and fine-tuning stimulation.
30 min – Research Highlights
Key findings from Dr. Alon and Prof. Meyr on spinal stimulation and motor recovery.
60 min – Introduction to NISE-Stim – Lower Extremity
Practical application and individualized setup.
Day 2
30 min – Hands-On Laboratory II
Electrode placements and stimulation settings for lower extremity function.
45 min – NISE-Stim for Trunk and Upper Extremity
Adapting protocols for core and arm involvement.
30 min – Hands-On Laboratory: Trunk and Upper Extremity
Practical session focusing on setup, stimulation, and function.
15 min – Q&A: NISE-Stim Protocols and Practice
15 min – Break
30 min – Introduction to Functional Electrical Stimulation (FES)
Understanding the role of FES.
30 min – Hands-On Laboratory: FES
Applying FES for functional movement patterns.
20 min – Comparing E-Stim Units
Pros and cons of various devices used in neurorehabilitation.
30 min – Treatment Insights
Case examples, clinical reasoning, and integration into therapy plans.
10 min – Final Q&A and Wrap-Up
Research:
Motavalli, Gerti, Jan J. McElroy, and Gad Alon. "An exploratory electrical stimulation protocol in the management of an infant with spina bifida: a case report." Child Neurology Open 6 (2019): 2329048X19835656.
Goutam Singh, PT, PhD; Anastasia Keller, PhD; et al.
Safety and Feasibility of Cervical and Thoracic Transcutaneous Spinal Cord Stimulation to Improve Hand Motor Function in Children With Chronic Spinal Cord Injury. Neuromodulation 4/2023, https://doi.org/10.1016/j.neurom.2023.04.475
Kristin Girshin 1,2, Rahul Sachdeva, et al. Spinal Cord Neuromodulation to treat Cerebral Palsy in Pediatrics: POUNCE Multiside Randomized Clinical Trial 6/2023 Frontiers in Neuroscience, 10.3389/fnins.2023.1221809
James J. Laskin, Zeina Waheed,et al. Spinal Cord Stimulation Research in the Restoration of Motor, Sensory, and Autonomic Function for Individuals Living With Spinal Cord Injuries: A Scoping Review, Archives of Physical Medicine and Rehabilitation 2022;103: 1387-97, http://www.archives-pmr.org/
Parag N. Gad, Evgeniy Kreydin, Non-invasive Neuromodulation of Spinal Cord Restores Lower Urinary Tract Function After Paralysis, Frontiers in Neuroscience, doi: 10.3389/fnins.2018.00432
Samejima, S. Caskey, C. D. Inanici, F. Multisite Transcutaneous Spinal Stimulation for Walking and Autonomic Recovery in Motor-Incomplete Tetraplegia: A Single-Subject Design. Phys Ther 2022;102: DOI10.1093/ptj/pzab228.
Anastasia Keller1,2, Goutam Singh 1,2, et al. Noninvasive spinal stimulation safely enables upright posture in children with spinal cord injury NATURE COMMUNICATIONS https://doi.org/10.1038/s41467-021-26026-z
Solopova IA, Sukhotina IA, Zhvansky DS, et al. Effects of spinal cord stimulation on motor functions in children with cerebral palsy. Neurosci Lett. 2017;639:192-198.
Krucoff MO, Rahimpour S, Slutzky MW, Edgerton VR, Turner DA. Enhancing Nervous System Recovery through Neurobiologics, Neural Interface Training, and Neurorehabilitation. Front Neurosci. 2016;10:584.
Gerasimenko Y, Gad P, Sayenko D, et al. Integration of sensory, spinal, and volitional descending inputs in regulation of human locomotion. J Neurophysiol. 2016;116(1):98-105.
Lee NG, Andrews E, Rosoklija I, et al. The effect of spinal cord level on sexual function in the spina bifida population. J Pediatr Urol. 2015;11(3):142 e141-146.
Sayenko DG, Atkinson DA, Floyd TC, et al. Effects of paired transcutaneous electrical stimulation delivered at single and dual sites over lumbosacral spinal cord. Neurosci Lett.2015;609:229-234.
Shideler, B.L., et al., Toward a hybrid exoskeleton for crouch gait in children with cerebral palsy: neuromuscular electrical stimulation for improved knee extension. J Neuroeng Rehabil, 2020.